

On the wing design of NGCTR-TD Belardo M., Diodati G., Beretta J., Paletta N., Giuliani V., Orlando S., Ariola P., Graziano M., Pezzella C., Di Palma L.

Presenter: M. Belardo

Table of contents

- **T-WING Project Overview**
- □ Scientific & Technical High Level Project-Goals
- Development logic
- □ Process towards Critical Design Review

2 - 4

SEPTEMBER

2020

□ Critical Design Review overview

Paper objective and scenario

This work is focused on the wing design workflow of the innovative composite wing of the Next Generation Civil Tiltrotor Technology Demonstrator

SEPTEMBER

- The Next Generation Civil Tiltrotor Technology Demonstrator (NGCTR-TD) is one of the Fast Rotorcraft Integrated Aircraft Demonstrator Platforms foreseen in H2020 Clean Sky 2 Program
- The aim of NextGenCTR IADP is the design, construction and flying (TRL
 6) of an innovative Civil Tiltrotor
- □ T-WING project is working on the composite wing of the NGCTR-TD planned to be flying in 2023: design, manufacturing, qualification and flight-testing of the wing and moveable surfaces of the NGCTR-TD.

T-WING Development logic

Manufacturing

2

4

SEPTEMBER

Scientific & Technical High Level Project-Goals

Challenges for the wing of a tiltrotor (at the **minimum structural weight**): safety with respect to **strength** and **buckling** capability under loads, **aeroelastic** stability (flutter and whirl flutter), **crashworthiness**

- 4

SEPTEMBER

2020

- Peculiarities of NGCTR-TD wing architecture
 - new high lift, low drag wing optimized to improve downwash impingement in helicopter mode (Hovering)
 - Compact structural wing box: almost half of the wing chord-length dedicated to the moveable surfaces
- Manufacturing: one-shot highly integrated composite wing structure
- Further challenges : fuel capacity (mission); functionality (systems installed inside the wing box), accessibility requirements, segregation

Main results of the design work flow of T-WING Critical Design Review are shown in the present paper

Design workflow

functional and systems interface requirements

4

SEPTEMBER

Preliminary sizing and optimization

- Multi-Objective Genetic Algorithm to optimize the wing-box structure
- Optimization variables: thicknesses and areas of the wing-box.
- Optimization objectives: wing structural mass minimization and safety margin maximization.

SEPTEMBER

SEPTEMBER

2020

PDR AEROELASTIC MODEL

- Hybrid structural model: stick-beam model for wing and moveable surfaces, Nastran Super-Elements provided by the WAL for fuselage, tail and nacelles.
- DLM aerodynamic model: flat panels representing wing and tail and slender bodies/ interference elements representing fuselage and nacelles.
- Matching between dynamic and aerodynamic models achieved by the use of Infinite Plate Splines (IPS).

Preliminary Flutter analyses

Multi-objective optimization (FEA)

zonal thickness optimization

P3 MINOR LOWER SKIN ontour Plot omposite Strain(P3 (minor), Mil Min principal strain envelope

optimization of the composite parts

- Wing FEM Altair **OptiStruct** environment 2D and 1D Elements
- Optimization performed for the composite structures (skins and spars) – equivalent PSHELL
- **Optimization constraints** •
 - No buckling up to 80% of Limit Load on skin and spars;
 - Strength Margin of Safety > 0 at Ultimate Load on composite parts (max strain criterion);
 - Max allowed wing tip flexural displacements and torsion angle
- gradient descent optimization algorithm
- no. 15 Loading conditions: no. 12 LC for strength and buckling + no. • 3 LC for Flexural Out of Plane M_x , Torsional M_v and Flexural In Plane Μ,
- design variables: thicknesses of the upper and lower skins and of the spars (CFRP)
- Outcome: zonal optimization along the wingspan
- Optimized FEM used to compute new stiffness distributions and update structural aeroelastic stick beam model and repeat analyses
- Zonal optimization is the starting point of an engineered model and a detailed FEM

Δ

SEPTEMBER

2 - 4 september 2020

Stress analysis

Envelope of tensile strains all over the sizing load conditions

Envelope of compressive strains all over the sizing load conditions

Tip rib stress analysis

flight mechanics requirement

SEPTEMBER

2020

Preliminary study of a suitable set of reinforcement beams to be added to the wing box to increase the wing stiffness and match the dynamic requirement on the **first elastic frequency**

impact of removing certain groups of beams along the wing span

Sactions	f/f1 torget	Performance	Performance	
Sections	I/II_target	Reduction %	Enhancement %	
1,2,3,4	1.001	0.0%	6.7%	
1,2,3	0.997	5.4%	6.4%	
2,3,4	0.993	11.5%	6.0%	
2,3	0.990	16.8%	5.6%	
1,2	0.975	40.5%	4.0%	
2	0.968	51.1%	3.3%	
3	0.955	72.3%	1.9%	
1	0.942	92.3%	0.5%	
-	0.937	100.0%	0.0%	

Tuning of stiffness

- A subsequent more detailed study was performed to properly reinforce the wing both in flexural and in torsional stiffness, to cope with flight mechanics and whirl flutter stability
- The study took in consideration weight constraints, manufacturability and allowables characterization campaign

4

SEPTEMBER

2020

2

Stringer			HELICOPTER MODE		AIRCRAF	T MODE	
Pabric Baseline lay-up	SOLUTION	ADDED WEIGHT RESPECT TO BASELINE MODEL (%) (FEM ESTIMATION)	FLEXURAL FREQUENCY IN HELICOPTER MODE F/F_TARGET	FLEXURAL FREQUENCY IN AIRCRAFT MODE F/F_TARGET	TORSIONAL FREQUENCY - SYMMETRIC MODE F/F_TARGET	TORSIONAL FREQUENCY - ANTI- SYMMETRIC MODE F/F_TARGET	FORE AND AFT F/F_TARGET
FABRIC ADDIDITAND	BASELINE MODEL	0	85%	89%	93%	97%	108%
+45* Stringer	Adding UD Stringers and UD Pad Reinforcement	3%	93%	99%	94%	98%	111%
457 457 FABRIC UD Fabric Baseline lay-up	SOLUTION 2W_1S(Adding 4 plies in high strain energy areas for torsional modes + UD PAD + UD stringers)	11%	100%	104%	102%	108%	115%
Stringer	SOLUTION 6W_1S(Adding 4 plies in high strain energy areas for torsional modes + UD PAD + UD stringers)	8%	99%	104%	101%	107%	115%
HYBRID lay-up	GFEM_v1 (Design & Manufacturing reviewed solution to pursue ease of manufacturing avoiding ply drop)	1%	97%	100%	95%	99%	112%
245* Fabric baseline lay-up FABRIC Added Fabric HYBRID lay-up	GFEM_v2 (Design & Manufacturing reviewed solution to pursue ease of manufacturing avoiding ply drop) + 2 Fabric plies added	6%	98%	102%	100%	106%	114%

On the wing design of NGCTR-TD

Flutter analyses 2D FEM *Aeroelastic model*

A refinement of the aeroelastic model has been performed by including full wing and moveable surfaces coarse FEM

Details of moveable surfaces

CDR AEROELASTIC MODEL

- Hybrid structural model: **coarse FEM** for wing and moveable surfaces, Nastran Super-Elements provided by the WAL for fuselage, tail and nacelles.
- DLM aerodynamic model: flat panels representing wing and tail and slender bodies/ interference elements representing fuselage and nacelles.
- Matching between dynamic and aerodynamic models achieved by the use of Infinite Plate Splines (IPS).

moveable surfaces actuation line failure cases have been analyzed

- 4

SEPTEMBER

2020

An example of one of the no. 15 failure cases analyzed

Type of Failure	Acronym/Symbol
Actuator Functional (Electro-Hydraulic System) Failure	AF
Actuator Mechanical Failure	AM
Flaperon - Hinge Mechanical Failure	нм
Morphing- Upstop failure	HM1
Morphing- fitting failure	HM2
No failure	-

٠

#	Left Wing			Right Wing			
	Flaperon		Morphing (US ON)	Morphing (US ON)	Flaperon		
1	AF	AF	AF	AF	AF AF		

e.g. 2/3 flaperon actuators failed

- For the **No-Failure case**, flutter analysis performed at 1.15 Mach V_D (threshold 1.15 V_D).
- For the Failure cases, flutter analysis performed at Mach V_D (threshold 1.00 V_D)

Flutter analyses 2D FEM

Flutter of moveable surfaces

Flutter sensitivity studies

An example of flutter speed sensitivity wrt morphing upstop radial stiffness

- A considerable number of sensitivity studies have been performed by taking into consideration different failure cases and different combination of stiffness values
- The final outcome is a list of all the flutter cases identified and possible mitigation measures in terms of stiffness increase of the actuation line

> Pre-processor: Hypermesh Solver: MSC Nastran

 # Nodes:
 1233030

 # 2D Elements:
 1182673

 # 1D Elements:
 26415

 2D Mean size:
 0.3 in

DFEM

Internal details

Detailed FE model of the wing

- Inertia relief model
- Fuselage and tail modeled as Nastran superelements
- Nacelle Primary structure introduced as FEM (provided by the WAL)
- Structural and non structural masses modelled by Concentrated mass (CONM2) properly connected to the structure by means of RBE3

SEPTEMBER

2020

• 50 Loads conditions modelled and analyzed

Detailed FEM

Detailed stress analysis

WING-LAMINATE-STRENGTH-ANALYSIS - All Loading Condition Envelope

1

SEPTEMBER

2020

2

On the wing design of NGCTR-TD

Detailed stress analysis

WING – FUSELAGE LUG ANALYSIS

FASTENERS ANALYSIS

ACCESS PANELS INSTALLATION ANALYSIS

Bearing Bypass

- Fastener Shear-Tension
- Pull Through

10th EASN Virtual International Conference

On the wing design of NGCTR-TD

Δ

SEPTEMBER

Detailed stress analysis

RAMP-FITTING-STRESS-ANALYSIS

2

 Δ

SEPTEMBER

2020

HOISTING-FITTING-STRESS-ANALYSIS

WING BUCKLING ANALYSIS

Moveable surfaces stress and buckling analysis

FLAPERON

MORPHING SURFACE

2 - 4

SEPTEMBER

Fatigue (metallic parts)

- Initial checks by means of ground-air-ground (GAG) cycle
- The GAG cycle is the envelope of the Sea Level, ISA, Limit load stress levels reduced at the agreed factor (80%)
- Maximum tension loads have been extracted for each point load cases
- 2 Ground-Air-Ground (GAG) cycles per hour have been assumed
- Fatigue life cycles have been evaluated with S/N curve from MMPDS -11
- For lugs analysis a Kt factor have been calculated and applied for bearing loads
- Safe life approaches is used (scatter factor of 10)

Δ

SEPTEMBER

1. Requirement on minimum **local radial stiffness** of the wing at the supports

100% compliant

- Static calculation
- Output: stiffness along X and Z directions

ICDS requirements

2. The Wing shall provide the Inter-Connecting-Drive-Shaft with enough stiffness to ensure that the maximum **angular misalignment** does not exceed a prescribed value at each of the coupling locations in operative conditions

 Δ

SEPTEMBER

Emergency conditions: Ditching

WING DITCHING ANALYSIS

SOLVER: MSC NASTRAN

PERFORMED ANALYSIS: Results are based on Nastran SOL 101 - Inertia relief analysis type

DITCHING LOAD CONDITIONS: Strain contours have been plotted considering all the 8 Ditching Load Conditions

SEPTEMBER

2020

No catastrophic failure of composite under ditching

Emergency conditions: Crash

- <u>Requirement</u>: to show that any cabin occupants are protected in a crash situation (12g vertically down crash) from equipment mounted externally above the cabin including the wing
- <u>Tiltrotor</u>: NEED for a frangible section of the wing under crash, in order to detach the external wing and alleviate the mass insisting on the cabin
- □ Having defined the position of the frangible section the design shall ensure that this is the first area to buckle
- □ Still sufficient margin available for normal design cases and ditching loads

2 - 4

2020

METHODOLOGY

- <u>Selection of critical wing section</u>: 12 g static analysis iterated until critical areas fall in the desired section
- Progressive failure of the frangible section: static analysis iterated until complete failure of the section (removal 2. of failed elements
- 3. Assessment of the wing-fuselage link loads
- 4. Assessment of <u>wing strains/stresses</u> in the remaining portion

Emergency conditions: Crash

2

Δ

SEPTEMBER

2020

Maximum allowabl Tensile strain:

7791 με

- 6.130E+0

5.450E+03

3. Assessment of the wing-fuselage link loads 4. Assessment of wing strains/stresses in the remaining portion **Rigid Links Check**

Link ID	LINK POSITION	ELEMENT ID	Stage 3 – Loop1 LOADS, Ibf	Stage 4 LOADS, Ibf	
1	Fwd Lateral	64810	1623	-68	
2	Aft Lateral	64811	-1600	67	
3	LHS Fwd Vert	64813	-6643	-161	
4	LHS Aft Vert	64814	-19080	-944	
5	LHS Aft Drag	64815	1083	-46	
6	RHS Fwd Vert	64816	-4889	-193	
7	RHS Aft Vert	64817	-17550	-943	
8	RHS Aft Drag	64818	-1116	47	

Wing remaining

allowable values

Digital Mock Up

Wing and Moveable surfaces structures are made with an already certified composite material which, against the lighting strike, has shown a good behaviour without any additional protection (i.e. copper mesh). Metallic leading edge and ribs, together CFRP electrical conductivity, should be adequate for electrical bonding requirements

SEPTEMBER

Digital Mock Up

2

4

SEPTEMBER

Infos

T-WING Project Coordinator Mr Luigi Di Palma <u>l.dipalma@cira.it</u> Tel: +39 0823 623590 www.cira.it

This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No CS2-GAM-FRC-2014-2015

